Products and compositions with the Dirac delta function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 153915
(http://iopscience.iop.org/0305-4470/15/12/541)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:08

Please note that terms and conditions apply.

Corrigendum

Products and compositions with the Dirac delta function

Raju C K 1982 J. Phys. A: Math. Gen. 15 381-96
Equation (2.43) should read

$$
f \cdot \delta^{(k)} \underline{=}(-1)^{k} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} f^{(k-i)}(0) \delta^{(i)}
$$

so that (2.44) reads

$$
x^{-n} \cdot \delta^{(k)} \stackrel{\star}{=} \sum_{i=0}^{k}\binom{k}{i} \frac{(n+k-1-i)!}{(n-1)!} x_{\omega}^{-n-k+i}(0) \delta^{(i)}
$$

Also, (2.16) and (2.29) should respectively read

$$
\begin{aligned}
& f\left(\delta \delta^{\prime}\right) \stackrel{\star}{=}-\left[f(0) \delta_{\omega}^{\prime}(0)+f^{\prime}(0) \delta_{\omega}(0)\right] \delta+f(0) \delta_{\omega}(0) \delta^{\prime} \\
& P V \int \frac{g(x)}{x} \mathrm{~d} x=\lim _{\varepsilon \rightarrow 0} \int_{|x|>\varepsilon} \frac{g(x)}{x} \mathrm{~d} x .
\end{aligned}
$$

In the last of (3.17), the exponent of z_{+}should be $(i-2 m r-2 m-r) /(2 m+1)$.

